Factoring by Grouping

	Your Name	
	Class	Date
Team Name		
Team Members:		
A) Name:	B) Name:	
C) Name:		

1. <u>Terms</u> of an algebraic expression are separated by addition, which is indicated by a '+' or '-' sign. The expression $6x^2 + 3x - 12$ has 3 terms.

How many terms are there in each of the following expressions:

a) 6	x ² y ⁴	Answer
b) 6	$x^2 + xy + y^4$	Answer
c) 4	$x^3y^7 - 13x^3y^7 + x^3y^7$	Answer
d) 4	$x^{3}y^{7} + 9x^{2}y - x - y + xy$	Answer

2. Each term can have multiple <u>factors</u> (including a numerical coefficient). In $4x^3y^7z + 9x^2yz - yz$, the factors of the first term are 4, x^3 , y^7 , z

For $4x^2y^3z + 6x^2yz$, what are the factors of the	:
a) 1 st term	Answer
b) 2 nd term	Answer

3. The <u>Distributive Property</u> can be used to factor out common factors from each term of an expression. For example: $ax^2 + bx = x (ax + b)$

Factor: $4x^{3} + 12x^{2}y - 16xy^{2}$

Answer_____

- 4. The <u>Greatest Common Factor</u> (GCF) is the largest common factor that can be taken out of each term. To find the GCF: $24x^4y^3z - 48x^3y^2z + 36x^2y$
 - prime factor each term, express the factors using exponents
 - for each factor/base that appears in all the terms of the expression use the smallest power of the base
 - simplify the factors.

 $\frac{24x y z - 48x y z + 36x y}{24x^4 y^3 z = 2^3 3x^4 y^3 z}$ $\frac{48x^3 y^2 z = 2^4 3x^3 y^2 z}{36x^2 y} = \frac{2^2 3^2 x^2 y}{2^2 3x^2 y}$ $\frac{2^2 3x^2 y}{2^2 3x^2 y}$ (z is not included because there aren't any z's in the last term.) $GCF = 12x^2 y$

What is the GCF of: $27x^4y^3z + 18x^3y^2z^6 - 36x^2y^3z^5 + 54x^3y^2z^3$

5. The first step in factoring any expression is to factor out the GCF, if possible. $24x^4y^3z - 48x^3y^2z + 36x^2y$ can be factored to: $12x^2y(2x^2y^2z - 4xyz + 3)$

Factor: $27x^4y^3z + 18x^3y^2z^6 - 36x^2y^3z^5 + 54x^3y^2z^3$ Answer_____

6. A <u>common factor</u> can also be a <u>binomial</u>. We can factor out the binomial in the same way we would factor out a single variable.

Single variable: $ax^2 + 7a = a(x^2 + 7)$ Binomial: $x^2(x + 2) + 7(x + 2) = (x + 2)(x^2 + 7)$ Factor: $a) 4x^3(y - 2) - 3(y - 2)$ Answer_____

- b) 6w(z 5) + 3x(z 5) y(z 5) Answer_____
- 7. When the GCF has already been factored out or there are no common factors for <u>all</u> the terms of an expression, additional factoring can be done by <u>GROUPING</u> the terms of the expression and factoring common terms from each group. This is called <u>Factoring by Grouping</u>.

Factor by Grouping:	<u>ax + ay + bx + by</u>
group:	[ax + ay] + [bx + by]
factor each group:	a(x + y) + b(x + y)
Factor out the binomial:	(x+y)(a+b)

Factor by Grouping: a) $6x^2 + 12xy + 3xy + 6y^2$

b) $4x^2 - 6x - 8x + 12$

c) $6y^2 + 8y - 3y - 4$

8. Factoring by Grouping can be used to factor trinomials using the key number method.

For factorable trinomials of the form	$ax^2 + bx + c$	
 Example A: The key number is found by multiplying a and c. 	$\frac{10x^2 + 13x}{10 \cdot 4}$	
 Factor <i>ac</i> so that the sum of the two key-number factors = <i>b</i>. 	$\frac{ac = 40}{(8) \cdot (5)}$	<u>b = 13</u> 8 + 5
 Replace the middle term with two terms whose numerical coefficients are the sum of the numerical coefficient of the original middle term. 	$10x^2 + 8x$	+ 5x +4

• Factor by grouping.

2x(5x + 4) + (5x + 4) [same as 1(5x + 4)] = (5x + 4)(2x + 1)

Answer_____

Answer_____

Answer_____

= 13

Answer____

Example B: In this problem c is <u>negative</u>.

- Find the <u>key number</u> by multiplying *a* and *c*.
- Factor *ac* so that the sum of the two key-number factors = *b*.
 Since <u>*ac* = a negative</u> number, one factor will be negative and one will be positive.
 Since <u>*b* = a negative</u> number, the larger factor will be negative.
- Replace the middle term with two terms whose numerical coefficients are the sum of the numerical coefficient of the original middle term.
- Factor by grouping.

Factor: $6x^2 + 5x - 6$

$\frac{10x^2 - 3x - 4}{10 \cdot (-4)} = -40$		
_ac (-8	s = - 40 3) • (5)	b = -3 -8 + 5
1	0x ² - 8x	+ 5x - 4

2x(5x - 4) + (5x - 4)(5x - 4)(2x + 1)

Answer_____

Example C: Has a large key number:

- Find the <u>key number</u> by multiplying *a* and *c*.
- Factor *ac* so that the sum of the two key-number factors = *b*.
 - Since <u>ac = a negative</u> number, one factor will be negative and one will be positive.
 - Since <u>b = a positive</u> number, the larger factor will be positive.
 - -To help determine the key number, prime factor 280
 - Group the factors so they add to 27
- Replace the middle term with two terms whose numerical coefficients are the sum of the numerical coefficient of the original middle term.
- Factor by grouping.

Factor: $10x^2 - 3x - 18$

 $\frac{14x^2 + 27x - 20}{14 \cdot (-20)} = -280$

- $\begin{array}{r|l} ac &= -280 & b &= 27 \\ \hline \text{Not easy to see, so use prime} \\ \hline factoring \\ \hline 280 &= 2^3 \cdot 5 \cdot 7 \\ 2^3 &= 8, \quad 5 \cdot 7 &= 35 \\ 35 &+ (-8) &= 27 \end{array}$
 - $\begin{array}{c|cccc} ac &= -280 & b &= 27 \\ \hline (35)(-8) & 35 + (-8) \\ 14x^2 + 35x & -8x 20 \end{array}$

7x(2x + 5) - 4 (2x + 5)[factor out - 4 in order to have (2x + 5) in the 2nd term] = (2x + 5)(7x - 4)

Answer_____

Let's put it all together, remember the first step is to find the Greatest Common Factor.

Factor: $18x^2y + 15xy - 18y$

Answer_____