Factoring by Grouping

Your Name

\qquad
Class \qquad Date \qquad
Team Name \qquad
Team Members:
A) Name:
B) Name: \qquad
C) Name:
\qquad

1. Terms of an algebraic expression are separated by addition, which is indicated by a ' + ' or '-' sign. The expression $6 x^{2}+3 x-12$ has 3 terms.

How many terms are there in each of the following expressions:
a) $6 x^{2} y^{4}$
b) $6 x^{2}+x y+y^{4}$
c) $4 x^{3} y^{7}-13 x^{3} y^{7}+x^{3} y^{7}$
d) $4 x^{3} y^{7}+9 x^{2} y-x-y+x y$

Answer \qquad
Answer \qquad
Answer \qquad
Answer \qquad
2. Each term can have multiple factors (including a numerical coefficient). In $4 x^{3} y^{7} z+9 x^{2} y z-y z$, the factors of the first term are $4, x^{3}, y^{7}, z$

For $4 x^{2} y^{3} z+6 x^{2} y z$, what are the factors of the:
a) $1^{\text {st }}$ term
b) $2^{\text {nd }}$ term

Answer \qquad
Answer \qquad
3. The Distributive Property can be used to factor out common factors from each term of an expression. For example: $a x^{2}+b x=x(a x+b)$

Factor:
$4 x^{3}+12 x^{2} y-16 x y^{2}$
Answer \qquad
4. The Greatest Common Factor (GCF) is the largest common factor that can be taken out of each term. To find the GCF:

- prime factor each term, express the factors using exponents
- for each factor/base that appears in all the terms of the expression use the smallest power of the base
- simplify the factors.

$$
\begin{aligned}
\begin{aligned}
& 24 x^{4} y^{3} z-48 x^{3} y^{2} z+36 x^{2} y \\
& 24 x^{4} y^{3} z=2^{3} 3 x^{4} y^{3} z \\
& 48 x^{3} y^{2} z=2^{4} 3 x^{3} y^{2} z \\
& 36 x^{2} y= \\
& 2^{2} 3^{2} x^{2} y \\
& 2^{2} 3 x^{2} y \text { (} z \text { is not included } \\
& \text { because there aren't }
\end{aligned} \\
\quad \text { any z's in the last term.) }
\end{aligned}
$$

What is the GCF of: $\quad 27 x^{4} y^{3} z+18 x^{3} y^{2} z^{6}-36 x^{2} y^{3} z^{5}+54 x^{3} y^{2} z^{3}$
Answer \qquad
5. The first step in factoring any expression is to factor out the GCF, if possible. $24 x^{4} y^{3} z-48 x^{3} y^{2} z+36 x^{2} y$ can be factored to: $12 x^{2} y\left(2 x^{2} y^{2} z-4 x y z+3\right)$

Factor: $27 x^{4} y^{3} z+18 x^{3} y^{2} z^{6}-36 x^{2} y^{3} z^{5}+54 x^{3} y^{2} z^{3}$ Answer \qquad
6. A common factor can also be a binomial. We can factor out the binomial in the same way we would factor out a single variable.

Single variable: $\quad a x^{2}+7 a=a\left(x^{2}+7\right)$
Binomial: $\quad x^{2}(x+2)+7(x+2)=(x+2)\left(x^{2}+7\right)$
Factor:
a) $4 x^{3}(y-2)-3(y-2)$
Answer
\qquad
b) $6 w(z-5)+3 x(z-5)-y(z-5)$

Answer \qquad
7. When the GCF has already been factored out or there are no common factors for all the terms of an expression, additional factoring can be done by GROUPING the terms of the expression and factoring common terms from each group. This is called Factoring by Grouping.

Factor by Grouping:
group:

$$
\begin{gathered}
\frac{a x+a y+b x+b y}{[a x+a y]+[b x+b y]} \\
a(x+y)+b(x+y) \\
(x+y)(a+b)
\end{gathered}
$$

Factor by Grouping:
a) $6 x^{2}+12 x y+3 x y+6 y^{2}$

Answer \qquad
b) $4 x^{2}-6 x-8 x+12$

Answer \qquad
c) $6 y^{2}+8 y-3 y-4$

Answer \qquad
8. Factoring by Grouping can be used to factor trinomials using the key number method.

For factorable trinomials of the form
Example A:

- The key number is found by multiplying a and c.
- Factor ac so that the sum of the two key-number factors $=b$.
- Replace the middle term with two terms whose numerical coefficients are the sum of the numerical coefficient of the original middle term.
- Factor by grouping.

$$
\begin{aligned}
& 2 x(5 x+4)+(5 x+4)[\text { same as } 1(5 x+4)] \\
& =(5 x+4)(2 x+1)
\end{aligned}
$$

Factor: $\quad 3 x^{2}+14 x+8$
Answer \qquad

Example B : In this problem c is negative.

- Find the key number by multiplying a and c.
- Factor ac so that the sum of the two key-number factors $=b$.
-Since $a c=$ a negative number, one factor will be negative and one will be positive.
-Since $b=$ a negative number, the larger factor will be negative.
- Replace the middle term with two terms whose numerical coefficients are the sum of the numerical coefficient of the original middle term.
- Factor by grouping.

$$
\begin{gathered}
2 x(5 x-4)+(5 x-4) \\
(5 x-4)(2 x+1)
\end{gathered}
$$

Factor: $\quad 6 x^{2}+5 x-6$
Answer \qquad

Example C: Has a large key number:

- Find the key number by multiplying a and c.
- Factor ac so that the sum of the two key-number factors $=b$.
- Since $a c=$ a negative number, one factor will be negative and one will be positive.
- Since \underline{b} = a positive number, the larger factor will be positive.
-To help determine the key number, prime factor 280
- Group the factors so they add to 27
- Replace the middle term with two terms whose numerical coefficients are the sum of the numerical coefficient of the original middle term.
- Factor by grouping.

$$
14 x^{2}+27 x-20
$$

$$
14 \cdot(-20)=-280
$$

$$
\begin{aligned}
& 7 x(2 x+5)-4(2 x+5) \text { [factor out } \\
& -4 \text { in order to have } \\
& (2 x+5) \text { in the } 2^{\text {nd }} \text { term] } \\
& =(2 x+5)(7 x-4)
\end{aligned}
$$

$$
\begin{array}{l|l}
\mathrm{ac}=-280 & \mathrm{~b}=27 \\
\hline
\end{array}
$$

Not easy to see, so use prime factoring

$$
\begin{gathered}
280=2^{3} \cdot 5 \cdot 7 \\
2^{3}=8, \quad 5 \cdot 7=35 \\
35+(-8)=27 \\
\begin{array}{c|c}
\mathrm{ac}=-280 & \mathrm{~b}=27 \\
\hline(35)(-8) & 35+(-8)
\end{array}
\end{gathered}
$$

$$
14 x^{2}+35 x-8 x-20
$$

Answer \qquad

Let's put it all together, remember the first step is to find the Greatest Common Factor.
Factor: $18 x^{2} y+15 x y-18 y$ Answer

